Supplementary Information

Crystalline-Amorphous-Crystalline Transformation in a Highly Brilliant Luminescent System with Trigonal-Planar Gold(I) Centers

Kosuke Igawa¹, Nobuto Yoshinari¹, Mitsutaka Okumura¹, Hiroyoshi Ohtsu², Masaki Kawano^{2,3} & Takumi Konno¹

¹ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

² The Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, Korea.

³ Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Supplementary Table 1 | Emission (em) data in the solid state.

compounds	em: $\lambda_{\text{max}}/$ nm a	$oldsymbol{arPhi}^{b}$	τ / μs ^c
[1]Cl ₂ ·8.5H ₂ O ^d	513	>0.95	4.51
[1]Cl ₂ ·8.5H ₂ O ^e	523	>0.95	5.71
[1]Cl ₂ ^d	590	0.52	f
[2]Cl ₂ ^d	473	0.55	f
$[1](OTf)_2 \cdot H_2O^d$	540	>0.95	4.15
$[1](OTf)_2 \cdot H_2O^e$	555	>0.95	5.02
$[Au_2Cl_2(dppm)_2]^{d,g}$	480	0.69	f

a The excitation wavelength was set to 390 nm. b Error \pm 5%. c Determined with excitation at 337 nm. d Measured at ambient temperature. e Measured at 77 K. f Not measured. g Heated sample of $[Au_2Cl_2(dppm)_2]\cdot(acetone)$.

$Supplementary \ Table\ 2 \ |\ Crystallographic\ data\ of\ [1]Cl_2\cdot 8.5H_2O\ and\ [1](OTf)_2\cdot H_2O.$

	[1]Cl ₂ ·8.5H ₂ O	[1](OTf) ₂ ·H ₂ O
Formula	C ₇₅ H ₆₆ Au ₂ Cl ₂ O _{8.5} P ₆	$C_{154}H_{132}Au_4F_{12}O_{14}P_{12}S_4$
Color, form	Pale yellow, block	Pale yellow, plate
Mw	1753.93	3722.33
Crystal system	Cubic	Monoclinic
Space group	Pa-3	$P2_1/n$
a/ Å	24.7728(9)	23.6242(4)
b/ Å	24.7728(9)	26.5462(5)
c/ Å	24.7728(9)	23.9188(4)
α (°)	90	90
β (°)	90	101.304(7)
γ (°)	90	90
<i>V</i> / Å ³	15202.9(10)	14709.3(4)
Z	8	4
T/ K	200(2)	200(2)
F(000)	6928	7344
ρ calcd/ g· cm ⁻³	1.533	1.878
$\mu(Mo K\alpha)/ mm^{-1}$	4.104	4.242
Crystal size /mm ³	0. 20×0.20×0.20	0.10×0.05×0.05
Limiting indices	$-29 \le h \le 32$,	$-30 \le h \le 30$,
	$-31 \le k \le 32,$	$-34 \le k \le 34,$
	$-29 \le 1 \le 32$	$-29 \le 1 \le 30$
R1 (I>2σ(I)) ^{a)}	0.1282	0.0817
wR2 (all data) b)	0.2697	0.1666
GOF	1.332	1.071

a) $R1 = \Sigma ||F_o| - |F_c| / \Sigma |F_o|$.

b) wR2 = $[\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$.

$\textbf{Supplementary Table 3} \mid \textbf{Major components in the calculated absorption spectrum of Au complex.}$

System	Absorption energy, nm	Excitation Nature ^a
[Au ₂ (dppm) ₃]Cl ₂	325.2	HOMO-11→LUMO (0.63822)
		HOMO-12→LUMO(-0.15071)
	324.4	HOMO-11→LUMO(0.14028)
		HOMO-12→LUMO(0.64768)

^a Major coefficients in the CI expansion are in parenthesis.

Supplementary Figure 1 | IR spectra of a, [1]Cl₂·8.5H₂O and b, [1](OTf)₂·H₂O.

Supplementary Figure 2 | Emission decay of a, [1]Cl₂·8.5H₂O (λ_{ex} = 337 nm) and b, [1](OTf)₂·H₂O (λ_{ex} = 337 nm). Red and black dots indicate the data measured at room temperature and 77 K.

Supplementary Figure 3 | Contour plots of [1]Cl₂·H₂O.

Supplementary Figure 4 | **Simulated absorption spectrum of Au complex with 3Cl⁻ calculated by TD-DFT calculation.** The two dominant components in the absorption spectrum were transitions from HOMO-12 to LUMO and from HOMO-11 to LUMO.

Supplementary Figure 5 | Emission (em) and excitation (ex) spectra of a, [1]Cl₂·8.5H₂O and b, [1](OTf)₂·H₂O. Red and black lines indicate the data measured at room temperature and 77 K. λ_{ex} = 390 nm for all measurements. λ_{em} = 510 nm (room temperature) or 523 nm (77 K) for [1]Cl₂·8.5H₂O. λ_{em} = 540 nm (room temperature) or 555 nm (77 K) for [1](OTf)₂·H₂O.

Supplementary Figure 6 | Emission spectra of [1]Cl₂·8.5H₂O (black line) and [1](OTf)₂·H₂O (red line) in MeOH at room temperature ($\lambda_{ex} = 407$ nm).

Supplementary Figure 7 | Thermogravimetric (TG) and differential thermal analysis (DTA) curves of $[1]Cl_2\cdot 8.5H_2O$ (left) and $[1](OTf)_2\cdot H_2O$ (right).

Supplementary Figure 8 | Solid-state MAS 31 P spectra of [1]Cl₂·8.5H₂O, measured at room temperature. Bottom: fresh, middle: heated at 373 K, top: heated at 399 K. Symbols *, °, and Δ indicate side bands, bands due to coordinated dppm, and a band due to free dppm, respectively.

Supplementary Figure 9 | Perspective view of a, [2]Cl₂, which was determined by b, PXRD studies; experimental (red), calculated (black), and difference (blue) PXRD profiles and Bragg positions (green).

Supplementary Figure 10 | A perspective view of a, [Au₂(dppm)₂Cl₂], which was determined by b, PXRD studies; experimental (red), calculated (black), and difference (blue) PXRD profiles and Bragg positions (green). We determine the crystal structure of the heated sample of [Au₂(dppm)₂Cl₂]·(acetone). The Rietveld analysis of the powder X-ray diffraction pattern showed that the heated sample is [Au₂(dppm)₂Cl₂], where Au centers take a T-shaped structure bound by Cl⁻ (av. Au–Cl = 3.00 Å).

Supplementary Figure 11 | **Powder X-ray diffraction in the solid state.** Bottom: [2]Cl₂ after grinding in water, middle: ground sample of [2]Cl₂, top: [2]Cl₂.

Supplementary Figure 12 | Emission spectra in the solid state. Green line: $[1]Cl_2 \cdot 8.5H_2O$, black line: $[2]Cl_2$ after grinding in water. The emission quantum yield of the recovered sample is 85%. The lower quantum yield is likely due to the imperfect restoration of crystallinity resulting from this manual operation.

Supplementary Figure 13 | Powder X-ray diffraction of [1](OTf)₂·H₂O in the solid state. Bottom: fresh crystals, top: after being heated at 473 K.

Supplementary Figure 14 | Emission spectra of [1](OTf)₂·H₂O in the solid state. Fresh sample (black line) and after being heated at 473 K (red line).

a b

Supplementary Figure 15 | Optimized structures of a, singlet ground state and b, triplet excitation state of [1]Cl₂·H₂O.

Supplementary Figure 16 | ¹H NMR spectrum of a, [1]Cl₂·8.5H₂O and b, [2]Cl₂ in CD₃OD. The symbol (*) indicates solvents.

Supplementary Figure 17 | ^{31}P NMR spectrum of [1]Cl₂·8.5H₂O in CD₃OD.